
A-27

11.7 BEAM TENSION FLANGE CRACKING

The initial fabrication of the support structure included angles that connected the bottom

flanges of the parallel W-sections.  These transverse attachments were fillet welded to the

bottom flanges with a 10-cm long fillet weld for stability during transport.  The angles were

removed in the laboratory once the support structure was set in place.  The area of

connection was roughly ground smooth at three locations, while the fourth location was left

with a flame-cut section of angle remaining.

Late in the testing, a faulty wire gave erratic signals to one of the actuators.  When this

happened, control devices in the system would abruptly stop the testing, resulting in a slight

impact loading to the testing setup.  The problem could not be immediately identified, and

the impact loading continued sporadically over the course of one million cycles.  This

impact loading caused fatigue cracks at the locations where the fillet welded attachments

previously existed.  In fact, at one location over 60 percent of the tension flange of the

W12x72 beam had cracked.  The crack had penetrated 18-mm up the beam web as well.

This crack may be seen in Figure 11-30 and in Figure 11-31.

The procedure for repair was performed exactly as illustrated before.  Figure 11-32 shows

where the tip of the crack in the beam flange was replaced with a drilled hole.  Similarly,

Figure 11-33 shows the tip in the beam web drilled out.
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Figure 11-30: Crack in beam tension flange due to abrupt stops in loading.

Figure 11-31: Bottom view of cracked beam flange.
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Figure 11-32: Crack tip in tension flange drilled out.

Figure 11-33: Crack tip in beam web drilled out.
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To illustrate the importance of making sure the crack tip has been drilled out, Figure 11-34

shows a first attempt at drilling out the crack tip.  After drilling the hole, the red dye

penetrant is re-used to make sure the crack terminates in the hole that was drilled.  On this

occasion, the crack tip was missed by the drilled hole and a larger hole became necessary, as

seen in Figure 11-35.  Note that these holes are not intended to arrest the crack. They are

merely placed to remove the crack tip and provide a guide on the extent of the crack faces in

welding.

Figure 11-34: Initial hole drilled which missed the crack tip.

Figure 11-35: Enlarged hole captures the crack tip.
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Once the crack tips had been drilled out, a one-sided butt weld was made with a backing bar

in place (See Figure 11-36).  The completed butt weld was then ground smooth to allow for

redundant bolted plates to be used.  The ground butt weld and bolting pattern may be seen in

Figure 11-37.  The bolted plates were included as an additional precaution as this location

was a critical region of the support structure.  Although the bolted plates were designed as a

slip-critical assembly, it was projected that slip-critical connection should only be relied

upon as a safety measure in the event of full flange cracking.  In other words, the slip-critical

connection was projected to not be effective in preventing future crack initiation.

Figure 11-36: Completed butt weld with backing bar in place.
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Figure 11-37: Ground butt weld with bolt pattern drilled for adding redundant plates.

The full repair is shown in Figure 11-38.  The redundant plates have been placed above and

below the previously cracked flange.  A spacer plate was required on the lower side of the

beam to provide a level surface with the specimen.  Eight A490 bolts having a 22-mm

diameter were used on either side of the former crack location.  In the other three corners of

the support structure, only small cracks were found ( < 19-mm).  Drilling a hole through the

crack tips successfully stopped these cracks for the remainder of the testing.

Figure 11-38: Final repair of cracked beam tension flange.

Formerly
cracked, now
butt welded

Spacer
plate



A-33

11.8 FINAL COMMENTS ON HOLE DRILLING SUCCESSES

Drilling out the crack tip has been repeatedly shown to be successful in stopping a crack.

Figures 11-39 and 11-40 present a final illustration of the exceptional success common to

this repair technique.  The photo shows a location where a fatigue crack had grown to a

through-thickness crack in the beam tension flange.  This crack had propagated to within 50-

mm of the flange edge prior to hole drilling, and a large 29-mm hole was necessary to

capture the crack tip and arrest the crack.  To quantify the stress in the remaining tension

strip, a strain gage was mounted mid-way between the hole edge and the free edge of the

flange.  Strain gage readings indicated large stress ranges of 108 MPa were present.

Furthermore, a noticeable dip at this location was observed during testing, indicating the

area had tolerated a significant amount of stress fluctuations throughout testing.

Surprisingly, after eight million cycles at this stress range no further cracking was observed.

For this reason, the practice of hole drilling is highly advocated as an effective fatigue

repair.

Figure 11-39: Several cracks arrested by hole drilling.
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Figure 11-40: Large hole used in arresting crack at fatigue sensitive location.
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12 Appendix B:  Flowchart for Analytical Program                                     

Main Input

i = 1 to Number
of Stiffeners

i > # of Stiffeners ?

j=1 to Nsteps
j > Nsteps?

Nsteps=Integer(Final Crack
Length/Step size) + 1

Stiffener i
intact?

Calculate f
1
 (Effect of Stiffener

Restraint)

Stiffener i
severed?

Calculate f
2
 (Effect of Severed

Stiffener)

Is the crack tip
growing in a stiffener
or near a stiffener?

Set Flag1=1 to indicate linear
interpolation be used

Set Flag2 =1 to indicate this is the
first point of linear interpolation for

the stiffener that is cracking

Approximate crack length
when stiffener i will be completely

severed.

Calculate Σ(f1+f2)for crack length at
which stiffener will be severed

 (i.e., end of linear interpolation for
stiffener i)

Yes
No

Yes
No

Yes

No

Yes

No

Yes

No
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Calculate Residual Stress
Intensity Factor

Assemble ∆Keff

Is Flag1 = 1?
(Use linear interpolation
between intact stiffener

 and severed
stiffener?)

Is Flag2 = 1?
(First point of linear
interpolation is being

assessed?)

Calculate linear
slopes of ∆Keff,
∆K, Kapp,max and

Kapp, min

Calculate true ∆Keff using
linear interpolation

Plot Correction factor to be applied
to the CCT K solution, Σ(f1+f2+1)

Send output of incremental K
values to output sheets in Excel

Update estimated number of
accumulated cycles

Advance the half crack length, a,
by the step size, astep

Send message to user on
"Main_Input" sheet.  Indicate final
predicted number of cycles and

corresponding crack length

Is there an
edge web?

Calculate f1
(Effect of Stiffener Restraint)

 for edge web

Calculate Net Section
Coefficient

 (Finite Width Correction)

Yes

No

Yes Yes

No

No
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13 Appendix C: Arbitrary Point Force in Infinite Medium                          

y

x

σ

σ

2a

2s

P

Q

Two complex functions necessary for arbitrary force stress intensity factor:

(See Compendium of Stress Intensity Factors, Ref. 131 page 1.1.12)

Equation 1 Equation 2

H z( )
a zhat z( ).

zhat a( ) zhat2 a2.

G z( )
a z

z2 a2

where : zhat x i y. z x i y.

The resulting stress intensity factor requires these functions to 
be broken into four parts:

G1 1 Re G z( )( ) H1 Re H z( )( )

G2 Im G z( )( ) H2 Im H z( )( )

Note:  There was an error found in the handbook solution for G1 and G2.  Originally,
the handbook incorrectly stated:  G1 = 1 - Re(G(z)) and G2 = -Im(G(z))

Equation 1:  Manipulation into seperate real and complex parts:

H z( ) a zhat z( ).

zhat a( ) zhat2 a2.

Let  
zhat z
zhat a

 be part 1, 

and  zhat2 a2  be part 2

Figure 13-1:  Arbitrary point acting in flat sheet.

Equation 1: Manipulation into separate real and complex parts:
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Part one:

zhat z

zhat a

x i y. x i y.( )

x i y. a

zhat z

zhat a

x i y. x i y.( )

x i y. a

zhat z

zhat a
2 i.

y

x i y. a( )
. x i y. a( )

x i y. a( )
. 2 i. y. x. 2 i2. y2. 2 i. y. a.

x2 2 x. a. i2 y2. a2

2 y2. 2 y. i. a x( ).

x a( )2 y2

Part 2 (denominator):

zhat2 a2 x i y.( )2 a2

zhat2 a2 x2 2 i. y. x. i2 y2. a2 x2 y2 a2 2 i. y. x.

let:

q x2 y2 a2 r 2 y. x.

then

x2 y2 a2 2 i. y. x. q i r.

Assembling this denominator portion of the fraction:

1

x2 y2 a2 2 i. y. x.

1

q i r.

q i r.

q i r.
.

denom cos
φ

2
i sin

φ

2
..

q2 r2

where 

tan φ( )
r

q

2 y. x.

x2 y2 a2denom q2 r2 x2 y2 a2 2
2 y. x.( )2

Assembly: 

H z( )
a zhat z( ).

zhat a( ) zhat2 a2.

a denom.

denom
cos

φ

2
i sin

φ

2
.. 2 y2. 2 y. i. a x( ).

x a( )2 y2
.
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H z( )
a denom.

denom
cos

φ

2
i sin

φ

2
.. 2 y2. 2 y. i. a x( ).

x a( )2 y2
.

H z( )
2 a. y. denom.

denom x a( )2 y2.
y cos

φ

2
. sin

φ

2
x a( ).

i y sin
φ

2
. a x( ) cos

φ

2
..+

....

Resulting Values:

H 1 Re H z( )( )
2 y. a. denom.

denom x a( )2 y2.
y cos

φ

2
. sin

φ

2
a x( )..

H 2 Im H z( )( )
2 a. y. denom.

denom x a( )2 y2.
y sin

φ

2
. a x( ) cos

φ

2
..

Now seperate real and imaginary parts of Equation 2:

Equation 2: G z( )
a z

z2 a2

G z( )
a z

z2 a2

a x i y.

x i y.( )2 a2

a x i y.

x2 a2 y2 i 2. y. x.

q i r.

q i r.
.

where 

q x2 a2 y2
tan θ( )

r

q

2 y. x.

x2 y2 a2r 2 y. x.

Substitution of q and r:

G z( )
a x i y.

q i r.

q i r.

q i r.
. a x i y.( )

q2 r2

q2 r2
0.5

. cos
θ

2
i sin

θ

2
..
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substitute for q and r with: denom q
2

r2

G x( )
a x i y.( )

denom
denom. cos

θ

2
i sin

θ

2
..

G x( )
denom

denom
a x( ) cos

θ

2
. y sin

θ

2
.

i y cos
θ

2
. a x( ) sin

θ

2
..+

....

Therefore:

G1 1 Re G z( )( ) 1
denom

denom
a x( ) cos

θ

2
. y sin

θ

2
..

G2 Im G z( )( )
denom

denom
y cos

θ

2
. a x( ) sin

θ

2
..

and

H1 Re H z( )( )
2 y. a. denom.

denom x a( )2 y2.
y cos

φ

2
. sin

φ

2
a x( )..

H2 Im H z( )( )
2 a. y. denom.

denom x a( )2 y2.
y sin

φ

2
. a x( ) cos

φ

2
..

These resulting expressions are used to formulate K for a variety of cracks:

For a vertical force P, as shown in Figure 13-1:

K I

K 0
G2

1

κ 1
H 2

. with K 0
P

2 π a

where KI indicates an opening

mode crack

K II

K 0
G1

1

κ 1
H 1

. with K 0
P

2 π a

κ 1

κ 1
. where KII indicates an

sliding mode crack
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Alternatively, if an arbitrary horizontal force Q was applied, the following relations
would result: 

K I

K 0
G1

1

κ 1
H 1

. with K 0
Q

2 π a

κ 1

κ 1
. where KI indicates an

opening mode crack

K II

K 0
G2

1

κ 1
H 2

. with K 0
Q

2 π a

where KII indicates an

sliding mode crack






