11.7 BEAM TENSION FLANGE CRACKING

The initial fabrication of the support structure included angles that connected the bottom
flanges of the parallel W-sections. These transverse attachments were fillet welded to the
bottom flanges with a 10-cm long fillet weld for stability during transport. The angles were
removed in the laboratory once the support structure was set in place. The area of
connection was roughly ground smooth at three locations, while the fourth location was left

with aflame-cut section of angle remaining.

Late in the testing, a faulty wire gave erratic signas to one of the actuators. When this
happened, control devices in the system would abruptly stop the testing, resulting in adight
impact loading to the testing setup. The problem could not be immediately identified, and
the impact loading continued sporadically over the course of one million cycles. This
impact loading caused fatigue cracks at the locations where the fillet welded attachments
previoudy existed. In fact, at one location over 60 percent of the tension flange of the
W12x72 beam had cracked. The crack had penetrated 18-mm up the beam web as well.
This crack may be seenin Figure 11-30 and in Figure 11-31.

The procedure for repair was performed exactly asillustrated before. Figure 11-32 shows

where the tip of the crack in the beam flange was replaced with a drilled hole. Similarly,
Figure 11-33 shows thettip in the beam web drilled out.
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Figure 11-30: Crack in beam tension flange due to abrupt stopsin loading.

Previous location of fillet welded
attachment (Removed and ground
smooth)

W12 x 72

Figure 11-31: Bottom view of cracked beam flange.
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Drilled crack
tip in beam
flange

Figure 11-32: Crack tip in tension flange drilled out.

Drilled
crack tipin

beam web

Figure 11-33: Crack tip in beam web drilled out.
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To illustrate the importance of making sure the crack tip has been drilled out, Figure 11-34
shows afirgt attempt at drilling out the crack tip. After drilling the hole, the red dye
penetrant is re-used to make sure the crack terminates in the hole that was drilled. On this
occasion, the crack tip was missed by the drilled hole and alarger hole became necessary, as
seen in Figure 11-35. Note that these holes are not intended to arrest the crack. They are
merely placed to remove the crack tip and provide a guide on the extent of the crack facesin
welding.

Bottomiviewlofiheam tension flange

(Battomaviewiefibeamitension flange)
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Once the crack tips had been drilled out, a one-sided butt weld was made with a backing bar
in place (See Figure 11-36). The completed butt weld was then ground smooth to alow for
redundant bolted platesto be used. The ground butt weld and bolting pattern may be seenin
Figure 11-37. The bolted plates were included as an additiona precaution as this location
was acritical region of the support structure. Although the bolted plates were designed asa
dip-critical assembly, it was projected that dip-critical connection should only be relied
upon as a safety measure in the event of full flange cracking. In other words, the dip-critical
connection was projected to not be effective in preventing future crack initiation.

Figure 11-36: Completed butt weld with backing bar in place.
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Figure 11-37: Ground butt weld with bolt pattern drilled for adding redundant plates.

The full repair is shown in Figure 11-38. The redundant plates have been placed above and

below the previoudy cracked flange. A spacer plate was required on the lower side of the

beam to provide alevel surface with the specimen. Eight A490 bolts having a 22-mm

diameter were used on either side of the former crack location. In the other three corners of

the support structure, only small cracks were found ( < 19-mm). Drilling a hole through the

crack tips successfully stopped these cracks for the remainder of the testing.
ST

Formerly
cracked, now
butt welded

Figure 11-38: Fina repair of cracked beam tension flange.
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11.8 FINAL COMMENTSON HOLE DRILLING SUCCESSES

Drilling out the crack tip has been repeatedly shown to be successful in stopping a crack.
Figures 11-39 and 11-40 present afina illustration of the exceptional success common to
thisrepair technique. The photo shows a location where a fatigue crack had grown to a
through-thickness crack in the beam tension flange. This crack had propagated to within 50-
mm of the flange edge prior to hole drilling, and a large 29-mm hole was necessary to
capture the crack tip and arrest the crack. To quantify the stress in the remaining tension
strip, a strain gage was mounted mid-way between the hole edge and the free edge of the
flange. Strain gage readings indicated large stress ranges of 108 MPa were present.
Furthermore, a noticeable dip at this location was observed during testing, indicating the
area had tolerated a significant amount of stress fluctuations throughout testing.
Surprisingly, after eight million cycles at this stress range no further cracking was observed.
For this reason, the practice of hole drilling is highly advocated as an effective fatigue

repair.

—

Figure 11-39: Several cracks arrested by hole drilling.
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Figure 11-40: Large hole used in arresting crack at fatigue sengitive location.
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12 Appendix B: Flowchart for Analytical Program

Main Input

Nsteps=Integer(Final Crack
Length/Step size) + 1

J=1 to Nsteps

j > Nsteps?

No

i =1 to Number
of Stiffeners

i > # of Stiffeners ?

No

Stiffeneri

Calculate f (Effect of Stiffener
intact?

Restraint)
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Calculate {, (Effect of Severed
severed?
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growing in a stiffener
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Yes—y interpolation be used

v
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when stiffener i will be completely]
severed.

No l
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13 Appendix C: Arbitrary Point Forcein I nfinite Medium
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Figure 13-1: Arbitra§ point acting in flat sheet.

Two complex functions necessary for arbitrary force stress intensity factor:

(See Compendium of Stress Intensity Factors, Ref. 131 page 1.1.12)

Equation 1 Equation 2
a(zhat-z a+z
H(2)= (zha — 7) az)=_2tZ
(zhat - a) («/ zhat’— az) -
where :  zhat=x-—ivy =Xty

The resulting stress intensity factor requires these functions to
be broken into four parts:

Gl=1+ Re(((2)) H1=Re(H(Z))
G2=Im(3(2)) H2=-1m(H(2))

Note: There was an error found in the handbook solution for G1 and G2. Originally,
the handbook incorrectly stated: G1 =1 - Re(G(z)) and G2 = -Im(G(z))

Equation 1: Manipulation into separate real and complex parts:

a(zhat — 2) Let zhat— z

5 5 zhat— a
(zhat— a)-\4/zhat” - &
and /\/ zhat’- &° be part 2

H(z)= be part 1,
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Part one:

zhat—z _x—iy— (x+ivy)

zhat— a X—iy—a

zhat— z _x—iy— (x+ivy)

zhat— a X—iy—a

zhat— z

zhat— a

=[2-i y ] (-x—iy+a) ~2iyx- 2-i2-y2+ 2-i-y-a=2-y2+ 2yi(a-x)
(xrivea)| (x-iyea)  2_ooxa-Pyrd  (x-a)iey?

Part 2 (denominator):

«/zhatz— & =«/(x— iy)2-

«/zhatz— & =«/X2— 20y x+ity?— & =J(f— y2- a2) - 2iyx

let:

q=x2— y2— & r=2-y-x
then

«/(Xz— V2= @) = 2iyxWg- ir

Assembling this denominator portion of the fraction:

[ f oo (f
1 = 1 arirs denom-(cosE +i-sin E))
J()g_ y2- az)—z-i-y-x 4/q—i-r 4/q+i-r P+ P

where

_ _ ¥ = 2yx
-’ = 2 tan(f ) — ——2—
denom q2-|-r2 J()g—yz—az) -|—(2-y-x)2 an(f) q ><2—y2—a2

Assembly:
= . _ =4, . 2 N _
H(2) a:(zhat — 2) a/\d/denom'(cos(f_ +isn %)).Zy +2y2| (a2 X)
enom
(zhat — a)-( zhat® - az) (x=a)"+y
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2

/\’ 2 )
H(2) w-(cos(f ) + i-Sin(f )) 2y +2vyi(a-x)

denom (x— a)2-|—y2

H(z) =22 denchm - y-cos(f—) +sin f_) (x=a) ...
denom-[(X— a) +y ] 2

f_) + (a-Xx) -cos(f_ﬂ
2 2

+ i-[y-sin

Resulting Values:

H 1 "Re(H(2)) = 2y-a-denom ]-[y-cos(%) - sin(%) (a- x)]

denom-[(x— a)2+ y2
ofg)een )
y-sinf—| + (a— X)-cos|—
2 2

Now seperate real and imaginary parts of Equation 2:

= = -2ay+x/denom
H = Im(H(2)) y :

denom-[(x— a)2+ yz]

= a+ 2z

Z-a

Equation 2: & 2)

Q7 8rZ = atx+ly = a+x+iy Aa-ir
N/ZZ— o «/(X+i-y)2— a J(xz— az—y2)+i.2.y.x A/q—i-r

where
=><2—a2— 2 Sr = -2yX
Q_ y tan(q) — y
r2yx a4 -y’ &

Substitution of g and r:

) . — _ 05
et v ([ ol o]
«/q+|-r A/q—"r «/qzﬁ—r2
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substitute for g and r with: denom '-\/q2+ P

A(X) =M-/\/denom-(cos(%) +i-sn %))

denom
(a+ x)-cos 9)_ y-sin 9
2 2

ﬂ) + (a+ X)-sin &)]
2 2

&x) - denom

denom

+ i-[y-cos

Therefore:

nom

Gl™1+Re (¥ 2) 1+ qdenom_[(a_'_ x)-cos(ﬂ) - y-sin(gﬂ
de 2 2

GZﬁm(G(z)) '—Jdenom-[y-cos %) + (a+ x)-sin(%ﬂ

denom

and

H1 "Re(H(2)) = 2y -2~y denom y-cos(f_) - sin(f_) (a- x)]
denom-[(x— a)2+ yz] 2 2

H2 = Im(H(z)) T—2ay/denom ]-{y-sin(fg)“a‘ X)'COS(%)]

denom-[(x— a)2+ y2

These resulting expressions are used to formulate K for a variety of cracks:

For a vertical force P, as shown in Figure 13-1:

K=
K [
Ko k+1

where K| indicates an opening
2Ap a mode crack

K= = .
N, - (L).Hl with K g ——

Ko k-1 20 a

k;l) where K, indicates an
k+1 sliding mode crack
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Alternatively, if an arbitrary horizontal force Q was applied, the following relations
would result:

. k;l) where K indicates an

K
I _ 1 , =
—'Gl"'(—)'Hl with K = Q

Ko k-1 2/\/p a k+1 opening mode crack
K2 1 = Q

— "G+ (_) ‘Ho with K= where K;, indicates an
Ko k+1 24p a sliding mode crack
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