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9 Conclusions                                                                                 

9.1 SUMMARY

A series of six experiments were conducted to define crack behavior in stiffened panels.

These tests provided valuable information regarding the effects of both stiffener geometry

and residual stress on crack growth rates. Variability of crack tip growth rates was seen

within each test.  This variability was attributed primarily to differences in the residual stress

distribution. To assess the residual stresses, measurements were made in two of the

specimens.  Also, complete records of stress levels were recorded as the crack grew in the

panel.  These stress readings were used to develop guidelines on choosing a representative

uniform stress for use in crack growth prediction.

Analytical modeling was performed to predict the experiments.  A simple model for the

residual stress distribution was included.  The analytical model demonstrated that simple

fracture mechanics principles could be used to effectively determine crack growth rates.

Superposition was used in the analytical model to combine the effects of residual stresses,

stiffener separation, and stiffener restraint on crack growth rates.  The effect of the finite

width correction was also reviewed throughout the modeling. Parametric investigations with

the model resulted in guidelines for proper life prediction based on consistent rational

assumptions.

A finite element modeling technique was developed as well, including an evaluation into the

use of gap elements.  The gap elements prevented overlapping of crack faces but also

introduced nonlinearity in the formulation.  A finite element model that excluded the gap

elements was developed in which superposition was valid.  This finite element model gave

virtually identical results as the analytical model.  By including gap elements, however,

small differences were seen between analytical model and the F.E. model.  A method was
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developed to obtain the results obtained with gap elements from a FE model without gap

elements. The differences between models with and without gap elements diminish when

the applied load overcomes the effects of crack closure.  Finite element modeling is more

time consuming but may be necessary for cracks in complicated geometries.

All of the prediction methods were sensitive to the specified residual stress distribution for

low applied stresses.  Various assumptions about the distribution of the applied and residual

stresses can affect the results profoundly.  However, when results are obtained from a

rational and consistent set of assumptions, both the finite-element and the analytical models

can simulate measured crack growth conservatively and reasonably accurately.  The

inherent variability of residual stress does not allow for very accurate predictions, however.

Therefore, the approach taken is to develop conservative models based on worst-case

residual stress distributions.

Since a typical default conservative assumption in these type of calculations is that there is

little or no crack closure, this is the same as assuming that the worst case large tensile

residual stresses are present.  Therefore, the effects of residual stress only decrease crack

growth rates.  This is because the applied stress range is used in the Paris Law, and

compressive residual stress may make the applied stress range less effective by contributing

to crack closure.

9.2 FINDINGS

The findings of this research may be divided into sections:

I. Experimental observations

A. The effect of redundancy was observed in these test structures.  The test

specimens shed load as they cracked which allowed the cracks to grow in a

stable manner to a total length exceeding one meter.
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B. Solid stiffeners will slightly slow down an approaching crack.  Stiffeners with

cutouts (ratholes or raised drain holes), however, provide no restraint on crack

opening and consequently no retardation can be expected. If there as a butt weld

in the plate nearby and parallel to the crack, accelerated growth similar to an

unstiffened, cracked plate may be expected.

C. Residual stress distributions have substantial variability.  At low stresses typical

for fatigue crack growth, this variability will significantly influence the accuracy

of predictions.  In the stiffened panel tests, compressive residual stress between

stiffener spacings significantly retarded crack growth rates.  In fact, there was

significant difficulty starting a crack centered between stiffeners.   The effect of

residual stresses far outweighs the effect of other variables.

D. Shear lag effects led to non-uniform applied stress distributions in the

specimens.  These shear lag effects also occur in ship structure, however.

Continuous stress monitoring was used to record the history of stress changes.

E. After the cracks encountered the solid stiffeners, the rate of propagation up the

web of the stiffener was similar to the rate of propagation in the plate beyond the

stiffener.    Even in the stiffeners with ratholes or raised drain holes in the

propagation path, cracks started at the apex of the holes as soon as the plate

crack had reached a distance from the stiffener equivalent to that of the cutout

height above the plate. This equivalent growth rate persisted until the stiffener

crack encountered the flange of the stiffener.

II. Analytical Model Observations

A. The analytical model correlated well with finite element modeling.

B. An attempt to correct for the increase in stress due to a reduction in the net

section overestimated crack growth rates.  The correction becomes more

applicable with decreasing redundancy in a structure.  In other situations, such as

the test setup, load was redistributed in a manner not proportional to the flexure

formula.

C. Stress gradients across the width of the panel are easily incorporated into the

analytical model by adjusting the stiffener areas.
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D. For butt welded plates and multiple propagating cracks, an analytical prediction

based on the stress-intensity factor for a flat plate is sufficient.

III. Finite Element Modeling Observations

A. Using gap elements reduces the available effective range in stress-intensity

factor (∆Keff ) in some situations. This occurs because crack closure effects

behind the crack tip promote residual stress redistribution.  Excluding gap

elements allows superposition to be used in determining Ktotal.  The results

without gap elements compare well with the analytical model. Finite element

modeling generally predicts less conservative results by including gap elements

with an initial gap of zero meters.

B. Any effects of gap elements are negligible when external load completely opens

the crack.

C. Applying temperature loads to nodes within the weld regions can reproduce

residual stress distributions.

D. Finite element modeling can be quite time consuming compared to the analytical

model.  Furthermore, no greater accuracy is seen in the typical studies conducted

in this report.  It is recommended to use finite element modeling to determining a

local uniform stress in the structure (without a crack) and then use this stress in

the analytical model to include the effect of the crack.

IV.  Miscellaneous Observations

A. The support structure was subjected to repeated instance of fatigue cracking.

These cracks were repaired by a variety of methods.  As testing continued, some

repairs performed better than others.  A complete report of the cracking, repair

method, and repair performance at a number of locations is included in

Appendix A.

B. Redundant structures exhibit a great amount of symmetry.  For instance,

cracking in an area of one support beam promoted cracking in its parallel

counterpart.  This was due to load shedding.

C. Fatigue cracks may often be repaired by simply drilling out the crack tip and

welding the crack faces together.  The repair is discussed in detail in Appendix
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A.  This repair significantly increases fatigue life with little effort since the

majority of fatigue life is seen when the crack is relatively short. The downside

to this quick repair is that any future crack growth will occur at a slightly

increased rate.

D. Other performance-based repairs make treating these fatigue crack problems in

older ship structure more economical.  These types of repairs are suggested for

review in the next section.
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9.3 MAIN CONCLUSIONS

1. The behavior of cracks in redundant welded stiffened panels is

substantially different than predicted using conventional fracture mechanics

solutions for a crack in a plate.

2. Redundancy of the structure and reasonable fracture toughness of the

steel allowed the stable growth of cracks more than a meter in total length.

The compliance of the cracked elements cause them to shed load to adjacent

elements in the structure.

3. Compressive residual stresses between stiffeners significantly retards the

rate of crack growth.  However, if there as a butt weld in the plate nearby

and parallel to the crack, accelerated growth similar to an unstiffened,

cracked plate occurs.

4. An analytical model was developed that can simulate these effects of

welded stiffeners and provide reasonably accurate worst-case predictions of

the propagation of very long cracks in welded stiffened panels.

5. Residual stress distributions have substantial variability.  At low stresses

typical for fatigue crack growth, this variability will significantly influence

the accuracy of predictions.  The effect of residual stresses far outweighs the

effect of other variables.

6. Finite-element modelling of the cracked stiffened panels verified the

analytical model but offered no greater accuracy for the cases studied.   It is

recommended to use finite element modeling to determining the stress

distribution in the structure (without a crack) and then use this stress in the

analytical model to include the effect of the crack.



172

9.4 RECOMMENDATIONS FOR FUTURE WORK

The analytical model described in this report should yield a reasonably adequate prediction,

especially considering the high variability seen under even constant amplitude loading.

The experiments suggest further review of several parameters, however.  First, the stiffener

sizes remained constant throughout the testing.  The crack propagation in panels with

different stiffener areas is likely to be similar and therefore reasonably well predicted by the

model.  However, confirmation of the behavior with different stiffener areas would facilitate

wider acceptance of the model.

The added effects of pressure loading should also be investigated.  Watanabe and Kawano

[166] performed a limited study of this situation and predicted crack growth through finite

element analysis. The effect of pressure on the shell may be significant.

Residual stress is inherently highly variable.  Further investigation into quantifying residual

stress will not improve the situation unless assembly order is known a priori and carefully

controlled during fabrication.

Predicting fatigue cracks allowed for speculation on the best and easiest repairs to make in

cracking situations. Stiffeners that are not welded to the plate will significantly decrease

crack growth rates.  For this reason, it would be worth examining the feasibility of using

adhesive-bonded plates to arrest crack propagation.

An immediately applicable repair involves a more conventional welding approach. Holes

are drilled at the crack tips and the crack faces are welded up to the drilled holes (See Figure

11-6 and Figure 11-9).  Additional reinforcement can be added by welding plate strips
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across the crack.  This repair detail will not perform as well as the original continuous base

metal, but the repair can be quickly implemented resulting in considerable additional life.

For example, a section in the support structure repeatedly cracked and was repaired with a

complete penetration plug weld.  Each repair afforded continued use of the section for one

million cycles at a measured stress range of 80 MPa. This type of performance-based repair

could serve the aging tankships in the TAPS trade until they are slated for retirement.

If watertightness is not a concern, drilling a stop hole alone may be used to arrest the crack

without the weld repair.  The key to drilling a stop hole is the size of the hole, as described

in Equation 11-1.

Fatigue involves a great amount of variability.  When combined with an equally variable

loading environment, the possibility of developing a model that correctly addresses all

parameters is impossible. Reasonable models, such as the ones presented in this report,

should be coupled with a reasonable models to predict the loading.
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