7 Comparison of Analvtical and Finite-Element M odels

7.1  INTRODUCTION

The finite element model was developed as an adternative to the smpler anaytical mode.
Comparisons were made to verify both models would produce smilar results under similar
testing variables. This chapter explains the comparisons made and details the pros and cons
of each modd.

7.2  APPLIED STRESSINTENSITY FACTOR COMPARISONS

The basis for both the analytical and F.E. modd is the ability to predict the applied stress
intensity factor. The applied stress intensity factor is the same whether gap elements are
used or not in aF.E. analyss. Figure 7-1 demonstrates the gpplied stress intengity factor for

both maximum and minimum stress in the specimen with solid stiffeners, case 1.
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Figure 7-1: Kaop,max and Kgypmin for both finite element and analytical models, immediately
severed stiffeners.
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This plot depicts the assumption that the stiffeners are severed immediately once the crack
has reached them. Only the maximum Kpp curves have been pointed out to prevent clutter
in the figure, but the type of lineis held constant in the minimum K, curves. Better
agreement between the andytical and finite element models is obtained if the net section

coefficient is not used in the analytical model. This characteristic will be noted in many of
the comparisons.

I nterpol ation between intact and severed stiffenersis seenin Figure 7-2. Here the results

shown in Figure 7-1 have merely included the assumption of equa growth ratesin the
stiffener and the plate.
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Figure 7-2: Kappmax aNd Kgypmin for both finite element and analytical models, stiffener
interpolation used.

These comparisons show that good duplication between the analytical and finite e ement
models exist without residua stresses included.
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7.3 RESIDUAL STRESSINTENSITY FACTOR COMPARISON

The next comparison made was that of the residual stress intensity factor. The residual
stress intengity factor showed the most scatter between models. Varied results were attained
between the models, and therefore a more in-depth study was made concerning the overall
effects on K. Figure 7-3 shows the different curves that comprised the study.
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Figure 7-3: K, for both finite element and anaytical models.

The study included the following components:

1. Thefinite dement K, obtained using gap elements and upper bound resdua stress.

2. Thefinite dement K, obtained without gap elements (Extrapolated from the gap element
anaysis with upper bound residua stress).
K from an anaytica model using atypical Faulkner residua stress determination.
K from analytica mode using the same residual stress distribution input into the finite
element models (F.E. upper bound residua stress)
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5. K, from an analytical model that matches K, from number 2. Iteration was used to
determine the residual stress distribution necessary in the analytical model to reproduce
the K, derived in study point two.

Figure 7-3 has severd characteristics that may be immediately observed. First, K, from
curve 1 never becomes negative. Thisis because the gap elements were specified with an
initial gap of zero meters. Consequently, J remains zero in compressive residua stress

regions until sufficient external load is applied to separate the crack faces.

In the F.E. analysis without gap elements, curve 2, J values and subsequent K, values were
determined by subtracting Kap from Kiata . Recall the criteriathat, in order to perform this
extrapolation, the external load must at least match the opening load before K, can be
obtained. Itisnot clear why this K, differs significantly from K, in curve 1), and so both K,
values were studied in their correlation with the anaytical mode.

Anaytica modeling provided residua stress intensity factors that corresponded well within
the range suggested by both F.E. analyses. When the residua stress distribution that was
created in the finite element analysis was used in the anaytical model, a K resulted (Curve
4) that averaged both finite element analyses. Increasing the residual compressive stresses
in the analytical model alowed curve 5 to be formulated. Finally, curve 3 shows that K,
obtained by using Faulkner’sresidual stress distribution provides an average K, curve that
emulates the gap element K, quite well. The Faulkner residual stress distribution is what
would normally be used in a standalone analytical moddl, where residua stress values are
not obtained in connection with F.E. modeling. The excellent correlation with the finite

element K, curves promotes its use as a smplification to the more complex F.E. modding.
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7.4  TOTAL STRESSINTENSITY FACTOR COMPARISONS

Minute differences in K, and K4y between the models have been very acceptable in the
results presented so far. The additive effects of these differences are seen in comparing Kiota

for the various anadlyses. Figure 7-4 plots each Kiotq curve for direct comparison.
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Figure 7-4: Ko for both finite element and anaytica models.

(Anaytical results do not include a finite width correction.)

No finite width correction was used in the analytical curves. Good agreement seems
consistent throughout the models plotted in Figure 7-4. However, small variations in Kioa
are cubed in the Paris Law, so it isimportant to correctly identify which curve is most
appropriate. For example, curve 5 would predict cracking stop altogether at 545-mm while
the other models do not indicate this drastic a reduction in Kota.
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Degraded correlation is seen when the net section coefficient or other finite width correction
is used in the analyticd modd. Figure 7-5 shows the increased Kiota VaAlues in the analytical
moddl.
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Figure 7-5: Kioa for both finite element and analytical models.
(Finite width correction included in analytical models.)

7.5  STRESSINTENSITY FACTOR RANGE COMPARISONS

Comparing DK provides the most direct view of discrepancies between F.E. and analytical
modeling. The comparison is aso the most significant because these values are cubed in the
Paris Law for crack growth prediction. Two figures are put forth to demonstrate the results:
Figure 7-6 plots DK 4op and Figure 7-7 plots DK ¢r. Once again it may be seen that the net

section coefficient decreases the compliance between the models.
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Figure 7-6: DK 4 for both finite element and analytical models.
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Figure 7-7: DK & for both finite element and analytical models.

(Finite width correction included in anaytical models.)
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Theincreasein error caused by including the net section coefficient is difficult to explain.
One reason may be that the increase in net section stress is not redized until the full pane
width is cracked and a crack has entered the edge web. The edge web might be providing
sufficient restraint to reduce the effects of increased net section stresses. This uncertainty
should be investigated further, but the true test of the modelsis their ability to predict the

experiments.

As will be seen in the next chapter, experimental comparisons support neglecting the finite
width correction. However, the net section correction for cracks in ship hulls will likely be
very close to unity for even long cracks. For thisreason, it could be used to add an
increased factor of safety to on€e's predictions.
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8 Prediction Successwith Experimental Cases

81 INTRODUCTION

Previoudly it has been shown that the analytical model can readily be used to obtain the
same results as the finite element model. This fact was taken advantage of in refining the
analysis to produce better results. For example, instead of re-running a complete set of F.E.
analyses with a different residua stress field the analytical modd was used with the new
resdud stressfield input. The result was then obtained in three minutes as opposed to

several days of running F.E. analyses and J value interpolation.

Many variables affected the predictions made in the stiffened panels. Correlation between
the anaytical and finite element model alone required a number of investigations to be
made. These investigations led to observations that were necessary to develop a cohesive
set of results under the same conditions. The same procedure will be taken in the following

sections.

It is not enough to show the fina results and expect an individual to reproduce them under
the same conditions without certain error. Therefore, the focus of the predictions will be the
revisons made to achieve good results. With this approach, one will learn the correct
procedure while avoiding the pitfalls that had occurred in devel oping the current final
results.

8.2  BASELINE SPECIMEN
Determining the applied stress ranges and values is the most significant source of error in

prediction accuracy. Such difficulty was redlized early on in baseline case predictions. The

initia predictions were made using the average of the three strain gages mounted at 76-cm.
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from the crack line (See Figure 3-7). These predictions, shown in Figure 8-1, indicated that
the correct uniform stress should be higher and within the constant moment region of the
experiment configuration. Good correlation with the experiments was obtained using a

uniform stress asindicated in Figure 3-8.
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Figure 8-1: Initia predictions made for baseline test specimen.
This location of stress monitoring was used for the remainder of the experiment predictions

to prevent bias in one prediction over another. The prediction based on the final stress

measurement point is shown in Figure 8-2.
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Figure 8-2: Find predictions made for basdline test specimen.

Note that use of afinite width correction dramatically skews the accuracy of the prediction
(The finite width correction in these analyses is made by using the net section coefficient).
The finite width correction is seen as the only contributor to the error, because the error
becomes exponentialy larger as the crack becomes larger. If the error were due to improper
stress definition, the deviation from the experimental results would be consistent from the

initial crack lengths.

The excellent correlation in the baseline case demonstrated that a uniform stress could be
used to predict crack growth in a plate with large stress gradients. Additional modeling was
done to try to directly use the measured stress gradient for predictions, but no improvement
in accuracy was attainable. In fact, using the low stress values at the interior of the plate
predicted low initia growth rates while the stress vaues at the exterior of the plate predicted
the higher than observed final crack growth rates. Therefore it is recommended that a
uniform stress be used to represent a stress gradient across a plate or stiffened plate. The

location to measure this uniform stress should be near enough to the crack line that little
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increase in stress would be expected to be seen at the crack line. In other words, the stress
should be taken as the stress acting on that cross section and not atrue “remote stress’ as the

anaytical formulations theoretically apply to.

83  CASE 1l SOLID STIFFENERS

Many analyses are presented in Figure 8-3 to illustrate the effect of various modelling
assumptions. Curves A and B illustrate that identical predictions will be obtained through
the finite e ement modeling technique and analytica modeling provided the same
assumptions are used. Prediction A was made using a F.E. anaysis without gap elements
and compressive residua stress of —70 MPa between weld lines. A similar result was
obtained with the analytical model by matching the F.E.A. K, (Curve5 of Figure 7-3) and

using the net section coefficient (Finite width correction). This curveis shown as Curve B.

Curve D was obtained by repeeting the analysis used in Curve B with the exclusion of the
finite width correction. This exclusion models any effects of displacement-controlled

0.8 @

0.7 '

06

0.5 1
0.4

0.3 1
0.2 e —1 X S I B _|Data  |._._
0.1 A

0

Half Crack Length, a (meters)

0 500,000 1,000,000 1,500,000 2,000,000

Cumulative Number of Cycles

Figure 8-3: Predictions made for Case 1: Solid Stiffeners.
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loading more effectively. There is significantly better accuracy obtained by removing the net
section coefficient. The unconservative growth rate exhibited in curve D is attributed to the

high compressive residual stresses and subsequent K, used in the anaysis.

Prediction C is the normal analytic model prediction. It uses Faulkner’s method of
specifying the residual stress distribution with atriangular tensile region equal to 3.5 times
the plate thickness. It isfelt that this result would be very accurate had the plate been
uniformly stressed without the steep gradient as seen in Figure 3-8. Low stressesin the
stiffeners were also reported, and these likely promoted dower crack growth than would be
present in a uniformly stressed panel.

Curve E isthe result of finite element analyses made with gap elements and the assumption
that stiffeners were immediately severed. In contrast, curve F represents the same analyses
with the exception that linear interpolation was used between an unbroken and broken
stiffener scenario. All of the finite element anayses were performed with no variation in the
specified residual stress. A significant amount of labor is required to perform the analyses
under adifferent set of residual stress magnitudes. As an dternative, this report
demonstrates that the smpler analytical model produces the same results as the F.E. model
without gap elements under the same loading conditions. Modifications in residual stress
magnitudes were then investigated through the analytical moddl, and it is certain that a finite
element model would produce identical predictions when performed under the same residual
stress modifications. Variances do occur when gap e ements are used in the finite element
model, however. For this reason, one may contrast the effect of using gap eementsin

curves E and A, where gap elements represent the only variation in the F.E. moddling.

Of these anayses, prediction C provides the most reasonable prediction. The authors

believe it is a reasonable prediction since it provides a conservative estimate without

involving complex analysis or the fine-tuning of parameters that are highly variable. Itis

the analytical model that incorporates a smple estimation of the residual stress and does not
152



include the net section correction. Had the finite element analysis without gap elements
(Curve A) been performed with lesser residua stress magnitudes, the F.E. prediction would

have been very smilar.

The testing of this specimen ended with cracking in remote regions of the specimen. The
remote cracking, in combination with the large stress gradient, support using this
conservative approach to estimate crack growth in situations where alarger structure

provides a more continuous force transfer into the full stiffened plate section.

The large differences among the various analyses indicates the high degree of sensitivity of
the analyses to the applied and residua stresses. The recommended analysis technique
would be case C. The fact that the other analyses give widely varying results, some
coincidentaly in better agreement with the experimental data, should not be construed as

random fudging of assumptions in order to match the data.

Cases two and three produced more uniform testing results and were not affected by any
remote cracks and subsequent loss in applied stresses. For these reasons, more accurate
modeling was justified and the stress gradient was directly accounted for.

84  CASES2AND 3: STIFFENED PANELSWITH CUTOUTS

Cases two and three of the experimental study gave very similar results. Consequently,
refinement in the modeling could be achieved with greater certainty that the behavior could
be expected in real structures. A progression of different analyses will be shown to arrive at

the recommended modeling technique.

The first predictions demonstrate the inadegquacy of smple rule-of-thumb coefficients
applied to each CCT K result. The CCT DK was used without a finite width correction to
produce the results shown in Figure 8-4. Rolfe' sreduction factor (0.6 R.F. in Figure 8-4)
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for multiple stiffeners (see Equation 2-10) was applied to the same CCT DK and produced
highly unconservative predictions.

Note that this result using Rolfe's reduction factor would be the same for Case 1, and the
curve labelled 0.6 R.F. in Figure 8-4 could aso be shown in Figure 8-3. It can be seen that
the result would be very unconservative for Case 1 aswdll..
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® 081 |A) CCT
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| cCT DK with

0.6 R.F.
0 i

0 500,000 1,000,000 1,500,000 2,000,000

Cumulative Number of
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Figure 8-4: Predictions based on smple CCT DK without finite width correction.

The next plot, Figure 8-5, demonstrates the differences obtained in finite element modeling.
By using gap elements in the finite element analysis, prediction H was made. Excluding gap
elements and using simple addition of F.E. K, and K gy values resulted in curve |. Both of
these prediction methods showed that the specified compressive residual stress was
retarding crack growth too much. Therefore, the residua stress distribution was reduced by
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five percent. This reduction brought compressive stress to a constant value of -66 MPa

between weald lines. The effect of the residua stress reduction is seen in curve F.
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Figure 8-5: Predictions based on F.E. analyses with and without the use of gap elements.

The finite element predictions generally exhibited poor reproduction of the experimental
data shape for the specified residua stress fields and applied loading. Finite e ement
modeling is only effectiveif valid input is specified, such as accurate applied stresses. It
was hypothesized that the poor curve appearance was attributable to both low stresses seen
inthe interior stiffeners and lack of restraint effects in the al the stiffeners. An investigation
was conducted on this speculation to improve the prediction curve appearance. Since the
analytical modd could duplicate the finite eement model results well, it was used as a quick
means of determining a prediction that would be obtained had either model been used.
Therefore, prediction refinement for cases two and three was made using the anaytical
model under different loading conditions. These modifications were primarily investigated
in the andytical model but may be easily duplicated in finite element modeling.

The lack of gtiffener restraint on crack growth was the first modification addressed. It
directly addresses observations of Petershagen and Fricke, where they reported that the
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stiffeners with cutouts were ineffective in slowing down an approaching crack tip. This
behavior was confirmed when observing the experiments involving stiffeners with cutouts
(ratholes or raised drain holes). F.E. analyses verified that there was virtually no decrease in
K as acrack approached aweld access hole. The finite dement method did, however,

predict decreasing K-vaues in the case of solid stiffeners.

A better understanding of crack retardation due to geometry may be obtained by taking a
closer look at the plate/stiffener interface. It isintuitive that a rathole would hinge more
eadly than a continuous stiffener. Thisis seenin Figure 8-6. However, since the crack
propagates into the solid stiffener readily, the benefits of dowing down arunning crack are
limited.

Figure 8-6: Effects of geometry on crack opening.

To accommodate the lack of stiffener restraint in panels with cutouts is relatively easy. All
that is necessary in the analytica modd isto set the f; coefficient to zero. Thiswill
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eliminate any contribution of the first effect discussed in Section 5.2 found on page 98. In
the finite element mode, the lack of gtiffener restraint is duplicated by properly modeling
the geometry of the cutout (rathole or raised drain hole).

Modeling the low stress in the stiffeners was considered next. An appropriate modification
that could be made to the models was reducing the force imparted by a severed stiffener.
Recall that the effect of a severed gtiffener in the model is treated as a pair of splitting forces
on the crack line. To reduce the magnitude of the splitting forces, the thickness of the
stiffener was decreased. A smaller stiffener areatrandates to a smaller amount of force that
the stiffener is responsible for, and the modification effectively represents a stiffener with
lower stress than the plate. One can accurately model different stress levelsin many
stiffeners by specifying aratio of the stiffener stress to the plate stress. In finite element
modeling, decreased stress levels are automatically incorporated if the complete load path in
the structure is included.

These changes were made to the analytical model and the results may be seen in Figure 8-7.
Curve E was made using an exterior stiffener stressratio of 0.68 and an interior stress ratio
of 0.16. These ratios were determined from strain gage readings from atop the stiffener
webs in the uncracked specimen. By lowering the interior stiffener stressratio to 0.13 even
better correlation was obtained, as seen in curve J. Both curves E and J were generated with
the analytical model neglecting the f; coefficient and the net section correction. They
illustrate that the analytical model can be very precise if the true stress distribution is known.
Furthermore, shear lag effects in the stiffened panel may be accounted for by specifying

only the individual stiffener stress ratios and an approximation to the uniform plate stress.
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Figure 8-7: Refined andytical modding.

Theresults of Figure 8-7 show much promise for the successful modeling of fatigue crack
growth in stiffened panels. Curve E doubled the prediction life estimate made by curve A,
the CCT DK prediction made assuming no stiffener or residual stress effects. The
modifications to the analytical approach could easily be duplicated in finite element
modeling by changing the uniform stress applied to the stiffenersinto a more redlistic
applied stress or modeling the complete load path. The uniform stress should still be applied
to the plate, however, because analyses that directly used the stress gradient underestimate
crack growth rates while the crack length was less than one stiffener spacing.

For comparison, the DK & values for many of the predictions made for case 2 and 3 are

shown in Figure 8-8. Data points in the figure represent extrapolated DK ¢ vaues from the

experimental data
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Figure 8-8: DK & for various prediction methods in cases 2 and 3.

Now that appropriate modeling techniques have been defined, it is important to look at some
precautions that should be made in such analyses. The first and most important precaution is
to use either agood estimate of the actual stress range or adightly conservative estimate.
The stress range affects the fina cycle count tremendoudly and if one wishes to obtain an
accurate or conservative measurement, due care should be exercised. Secondly, analyzing
several starting crack lengths is essential—especidly for situations where the initial crack
length may be affected by compressive residua stresses. To illustrate, consider Figure 8-9.
Curve G was made using the actual starting crack length of 316-mm, where the crack was
theoretically located in a compressive residual stress zone. This theoretical value of residua
stress exceeded the actual residua stress distribution and caused extremely low DK g vaues
to be obtained. Consequently, the prediction made gave an extremely high number of cycles
necessary to propagate the crack a short distance. On the other hand, using an initial crack

length of 322-mm, in the exact same analysis, resulted in the prediction seen as curve C.
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Figure 8-9: Possible prediction variation for cracks growing out of initial residual stress
zone.

The wide range is not an error in modeling procedure. Rather, it illustrates that the
variability in resdual stress may cause limited successin small crack growth estimates. A
small crack growth estimate in the course of this study means a crack less than one stiffener
spacing in length. To dleviate any unconservative estimates for small cracks, one could set

the compressive residua stressin the first stiffener span to zero.

85  CASE 4 STIFFENERSWITH RATHOLE AND MASTER BUTT WELD

Case four showed accelerated crack growth more typica of a plate specimen than a stiffened
panel. Therefore, predictions were appropriately made by using variations on the smple

CCT dgressintensity factor without accounting for any residua stress interaction.

The resulting predictions may be seenin Figure 8-10. Curve A was made using afinite

width correction factor and a stress range as determined in the same fashion as developed in
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section 8.1. Instead of using the net section correction to account for specimen finite width,

a smple secant formula was used:

_ apao
f = Lo 4
v \lsecgzoz

where 2ais the half-crack width and 2b isthe total plate width taken as the plate width plus
the 30.5-cm edge webs.
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Figure 8-10: Case four predictions.

This finite width correction was used for both its smplicity and because the net section
coefficient did not perform well under the current testing configuration. The net section
coefficient yielded higher amplification than was probable for shorter crack lengths in the
plate. The secant formula, however, exhibits a delayed amplification until the mgjority of
the plate is cracked. This behavior better suited the observations in the experiment. 1t should
be noted that the secant formula does not usually include the width of the edge webs, but it
certainly is not appropriate for a plate with stiffened edges. Therefore, the inclusion of the
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edge web platesin the total plate distance was a compromise between a theoretical
application and real world observations.

Curve B represents the same analysis without the finite width correction. Finaly, curve D
was made using the suggested weight function of Petershagen and Fricke to account for

stiffener separation:

2bt+ A
f="2 5 Eqn. 8-1
SEPTY a

where bs is the distance between stiffeners, t is the plate thickness, and As is the cross
sectional area of the stiffener. This coefficient was applied to the CCT K solution in the

following manner:

K, = f.f,(s vpa) Eqn. 8-2

In making these predictions, it was quite noticeable that the actud fatigue data could be
better mapped by deterring from the stress range definition determined in section 8.1.
Iterating on the stress range resulted in an excellent data fit for Ds = 35 MPa. This
prediction, curve C, includes the finite width correction used in prediction A. Trial and error
is not an option for practice, however, and therefore a reasonable expectation should fall in
the range of curves A, B and D. For case four it is recommended that the CCT K should be

used in conjunction with the secant finite width correction.

86  CASEZ2A: MULTIPLE SITE DAMAGE IN STIFFENERSWITH RATHOLES

Case 2a represented a stiffened pand with cracksinitiating at weld access holes (rathol es).
A complete description of the experiment was made in Section 4.6 on page 92. The
objective was to smulate four cracks at adjacent stiffenersin awider structure than the test
specimen. The configuration of the test specimen forced severa compromises. The

stiffener proximity to the edge webs and the large stress gradient across the panel were
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problems. The results of the test, therefore, are of limited use in devel oping a refined model

that would work well in realistic applications.

A smplified and conservative analysis was promoted based on the information from the
test. The prediction approach was similar to that of case four, where the CCT K was applied
and modifying coefficients investigated. The resulting model is developed in two stages:
Stage one is shown in Figure 8-11 and stage two in Figure 8-12.

Stage one involved making six predictions based on the CCT K equation. First, a prediction
curve is made for each crack tip except those propagating away from the exterior stiffeners.
A new crack length definition is used in the CCT K formula

K. =S +pcC Egn. 8-3

where c is the distance of the crack tip from the stiffener centerline.

This crack length was defined because sometimes the crack length would not be symmetric
about a stiffener, and best results were found if this definition was used. For the crack tips
propagating away from the exterior stiffeners, no K was determined directly. Rather, the
incremental crack growth was defined as twice that of the crack tip on the interior side of the
same stiffener. The stress values were taken from the values along each respective stiffener
line. For example, for the interior stiffeners the stress was determined by estimating the
stress at the stiffener line and approximately 20-cm from the crack line in the uncracked
body. The results of thisfirst phase may be seen in Figure 8-11.
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Figure 8-11: Stage one of prediction for case 2a.
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Figure 8-12: Beginning of stage two of prediction for case 2a.
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The prediction of stage one generates crack lengths that overlap rather than grow together.
By plotting the predictions, we may visualize number of cycles necessary for the cracks to
merge. Thiscycle count is determined by a stage one prediction. Next, the crack is treated
as a continuous crack similar to those modeled in the previous specimens. The continuous
crack may be seen in Figure 8-12, where the stage one predictions have been cut off to
represent merged crack tips. Any prediction made assuming the crack is continuous
comprises a stage two prediction. Since the specimen width prevented continued growth of
the crack, no stage two prediction was made.

The approach may be considered crude but offers a conservative model for assessment in
light of the uncertainty in the test results. Estimating the extreme stiffener crack tips as
twice the interior half provides a safe yet feasible behavior in the configuration.
Undoubtedly better models could be created if multiple, wider specimens were involved in

the experiment. However, loading and financia limitations make such a study impractical.
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